HEIDENHAIN

HIT Workbook
Fundamentals of Milling HEIDENHAIN
Conversational Programming

TNC 320
 TNC 620 iTNC 530

English (en)

V2
6/2012

All texts, illustrations and graphics, as well as any parts thereof, are copyrighted material.
They may be copied and printed for private, scientific and noncommercial use provided that the copyright note is added.
DR. JOHANNES HEIDENHAIN GmbH reserves the right to revoke this permission at any time. Without the prior written permission of DR. JOHANNES HEIDENHAIN GmbH, the texts, illustrations and graphics may not be duplicated, archived, saved on a server, included in newsgroups, used in online services, saved on CD-ROMs or used in printed publications. The unlawful duplication and/or circulation of the copyrighted texts, illustrations or graphics are subject to prosecution by criminal and civil law.

Authors:

Gerhard Müller (CNC-Verlag)
Joachim Siebler (CNC-Verlag)

The HEIDENHAIN learning concept is suited for the following controls:

- iTNC 530
- TNC 620
- TNC 320
- TNC 430
- TNC 426

Contents

1 The CNC milling machine..... 10

1.1 Setup..... 10
1.2 Keyboard overview..... 14
1.3 Screen layout..... 16
1.4 Operating modes..... 19
1.5 Moving the axes..... 21
1.6 Tools..... 22
1.6.1 Tool types..... 22
1.6.2 Tool reference points..... 23
1.6.3 Tool measurement..... 24

2 CNC fundamentals..... 26
2.1 Datums..... 26
2.2 Touch probes..... 28
2.3 Points on the workpiece..... 29
2.4 Program layout..... 29
2.5 BLK form..... 30

3 Technological fundamentals..... 34
4 Linear motions..... 40
4.1 Positioning with FMAX..... 40
4.2 Straight line (absolute)..... 41
4.3 Straight line (incremental)..... 41
4.4 Polar coordinates: Straight line LP..... 44

5 Contour programming..... 50

5.1 Radius compensation..... 50
5.2 Approach and departure..... 52
5.3 Roundings and chamfers..... 56
5.4 Circles..... 57
5.5 Circles with radius..... 58
5.6 Tangential circles..... 59

6 FK programming..... 64

7 Cycles..... 70

8 LBL applications..... 76

8.1 LBL as program section repeat..... 76
8.2 LBL as subprogram..... 77

9 Appendix..... 86

The three components of the HEIDENHAIN learning concept

HIT - The learning concept for HEIDENHAIN controls

The HIT software, programming station and HIT workbooks are the three components of a new learning concept. The goal is to be able to write the NC program for the "pattern plate" workpiece using the HEIDENHAIN programming station.
Your "pattern plate" workpiece will accompany you throughout the course, growing at each stage.

Initial state

... with drill holes

... and with contours

... and with cycles

Finished part

The HIT workbook and the HIT software assist you.
The HIT workbook contains assignments to be completed with the HIT software. The HIT software helps you learn the fundamentals of CNC technology, how to operate the HEIDENHAIN programming station, and how to create programs with the HEIDENHAIN conversational programming language.

The green fields in the workbook refer to the corresponding chapters of the HIT software, for example "Contour programming."

5. Contour programming

Circles CC/C

In order to program circular contours with C and CC, first work your way through the corresponding chapter. There you will learn how to program using the C and CC commands. The HIT workbook presents you with questions and additional assignments regarding this topic, for direct solving with the programming station.

Document your results in the workbook.
There are tests at the ends of chapters 4,5 and 8 to determine how well you have learned the material.
We wish you much joy and success with the HEIDENHAIN learning concept.

The Authors

Goal:
Once you have completed the workbook, you can competently program the "pattern plate" workpiece.

Write the following terms next to the appropriate number:

- Circular pocket
- Rectangular pocket
-Slot
- Pitch circle
- Holes
- Contour pocket
- Contour

1 :

2:
3:
4:

5 :

6:

7 :

Here you can see the finished program for the "pattern plate" workpiece.

The graphic of the workpiece is displayed in the Test Run operating mode.

Determine which tools you need to produce the
"pattern plate" workpiece.
Use the tools that you actually have in your workshop.
These will be entered in the control later.

Tool table
1 :
2:
3 :
4:
5:
6 :

7:

The CNC milling

 machine
1 The CNC milling machine

1.1 Setup

Name the green elements of the machine tool.

1 :
2 :

3:

4:

5:
$6:$

7:

Mechanical components

In this section you will learn about the typical components of a CNC machine.

Recirculating ball screw

What is the function of the recirculating ball screw? Why are the two ball screw nuts tensioned opposite to each other?

What is the function of the throttle-check valve?

Path measurement systems
Two methods are available for measuring the path traversed.

Measuring with rotary encoder and ball screw

Where is the rotary encoder attached?

State the values needed in order to determine the position.
\qquad
\qquad

What is the purpose of a rotary encoder?
\qquad

What is the disadvantage of measuring the path using this method?

Absolute and incremental path measurement

Identify the two types of systems.

Identify elements 1 through 5 . 1 : 2: 3:

4:
5:

Explain how absolute path measurement works.

What is the functional principle behind incremental path measurement?
\qquad
\qquad
\qquad
\qquad

Why do incremental path measurement systems need reference marks?
\qquad
\qquad
\qquad
\qquad
\qquad

1.2 Keyboard overview

Keyboard of the TNC 620 /TNC 320

1 :
5:
2:
6:
3:
7:
4:

The following keys are required frequently.
What are their names?

(1)

(2)

PGM

MGT
(3)

1:

2:

3:

Keyboard of the iTNC 530

Programming and operation of the TNC 320 /TNC 620 is similar to that of the iTNC 530.
The iTNC 530 additionally features a touchpad as well as an alpha-numeric keyboard.

1: Alpha-numeric keyboard for entering texts and file names, as well as for programming in ISO

2: Touchpad

1.3 Screen layout

1. The CNC milling machine

Screen layout

Identify the various areas.
1 :
2 :

3:

4:

5:
Start the programming station.
The following screen appears:

If you are using the demo version, click OK in the popup window.

Press the CE key several times.
The CE key (Clear Entry) is used to acknowledge dialogs and error messages.

The following screen appears:

If you have not installed the programming station yet, you will find assistance in the installation help of the HEIDENHAIN Interactive Training program.

CE

Press the screen layout key.

You can choose among several different views using the screen layout key.

They can be selected from the soft-key row.

POSITION	POSITION + STATUS

Press the POSITION+STATUS soft key.
POSITION
+
STATUS

The following screen appears:

Press the screen layout key to switch to a different view.You must either make a choice, or cancel with the END soft key to return to the previous functions.

With the operating-mode switchover key you can switch between the active machining mode and the active programming mode.

You will learn more about the operating modes in the next chapter.

END

Shutting down the programming station

In order to avoid losing data when shutting down the programming station, you must exit it correctly.

Press the Manual Operation operating mode key: the TNC switches to that mode.
-Shift the soft-key row until the OFF soft key for shutting down the system appears.

- Press the OFF soft key.
- Answer the subsequent question in the pop-up window with YES.

(1)

Exiting the programming station
inappropriately can lead to a loss of data.

1.4 Operating modes

(1)
(2)
(3)

웅

(4)
(5)
(6)

Operating modes

1. The CNC milling machine

Identify the individual operating modes.
1.

5:
\qquad 6:

7:
3:

4:

What do you do in the following operating modes?
9

Grouping of operating modes

The operating modes are divided into two groups:

(1)
(2)

Identify them and explain their functions.

1:
Functions:
$2:$

Functions:

The file management must always be called after selecting the operating mode.

PGM MGT

One mode of operation for machining and one for programming are always active. Switch between them via the operating-mode switchover key.

1.5 Moving the axes

1. The CNC milling machine

Moving the axes

Axes as per ISO 841 (DIN 66217)

The following rules apply to the arrangement of the axes.

The programmer assumes that only the tool moves, not the workpiece!

- Always write the programs as if the tool were moving.

Principal axes	Rotary axes	Parallel axes
X	A	U
Y	B	V
Z	C	W

1.6 Tools

1.6.1 Tool types

1. The CNC milling machine

Tools

Identify the tools and state their purposes.

(1)

(5)

(2)

(6)

(3)

(7)

(4)

(8)
\qquad
2:
6 :
\qquad
7 :
\qquad
8 :
4:
\qquad
\qquad

1.6.2 Tool reference points

At least which two tool dimensions must be measured?

The geometry information of the tool is relative to which point?
\qquad

Where is the geometry information stored?

Which points must coincide exactly?

Which point does the control use for motions in the spindle axis if the length 0 is entered in the tool memory?

The block $L Z+2$ FMAX of a program is run.
The tool length was accidentally entered 10 mm shorter than it really is. What actual depth results?

There is a danger of collision if too short a length is entered for the tool!

The block $L Z+2$ FMAX of a program is run.
The tool length was accidentally entered 10 mm longer than it really is. What actual depth results?

1.6.3 Tool measurement

State different possibilities for the measurement of tools.
\qquad
\qquad

How is the tool being measured in this example?

What are the benefits of contact-free measurement systems?

CNC fundamentals

2 CNC fundamentals

2.1 Datums

2. CNC fundamentals

Datums

Workpiece datum, machine datum, reference point

Explain the following datums.

M:
\qquad
\qquad
\qquad
W: (see middle figure on page 27)
\qquad
\qquad
\qquad
R:
\qquad
\qquad
\qquad

In the figure, circle where the active preset is indicated.

What point are the dimensions indicated there relative to?

Probing of the workpiece determines the distances from the workpiece datum W to the machine datum M .

2.2 Touch probes

2. CNC fundamentals Identify parts 1 through 5 and explain their functions.

1 :
\qquad

2:
\qquad
3:
3-D touch probe
\qquad
4:
\qquad
5:
\qquad

What initiates a trigger signal to the control?
\qquad
State some tasks that can be accomplished with a 3-D touch probe.
\qquad
\qquad
\qquad
What are the advantages of a 3-D touch probe over a dial indicator when setting up a workpiece?
\qquad
\qquad
\qquad

2.3 Points on the workpiece

Hone your skills with Cartesian coordinates.
Work your way through the "Points on the workpiece" chapter.

2.4 Program layout

Identify the various elements of the program.0 BEGIN PGM 112 MM
(2)

1 BLK FORM 0.1 Z X+0 Y+0 Z-20
(3) 3 TOOL CALL 5 Z S3200 F300

4 L X+30 Y+50 Z+1 RO
FMAX M3
(4)

5 L Z-2 RO
6 L X+120 R0
7 L X+150 \quad Y+100 Z+150 RO FMAX
(5)

8 M30
9 END PGM 112 MM
2. CNC fundamentals

Points on the workpiece

Program layout

3:
4:
5:

Explain the following M commands.

M3:
M8:
M9:
M30:

2.5 BLK form

2. CNC fundamentals

BLK form

The workpiece blank in the drawing must be defined. Start the programming station.

Switch to the third soft-key row.

- Press the NEW FILE soft key.
- Enter Blank.H in the pop-up window.

The extension .H creates a conversational program.

- Confirm creation of the program with the ENT key.
- Select mm as the unit of measure.
- Define the BLK form.*
*BLK=blank

Press the Test Run operating mode key: the TNC switches to that mode.

Press the LAST FILES soft key.

- Open the file Blank.H.
- Press the PGM MGT key: the TNC displays the file manager.

Press the screen layout key and then use the soft-key row to choose from among the following views:

| PROGRAM | PROGRAM
 +
 STATUS | PROGRAM
 +
 GRAPHICS | GRAPHICS | | MODEL |
| :--- | :--- | :---: | :---: | :--- | :--- | :--- |

- Press the PROGRAM+GRAPHICS soft key.

The workpiece blank of Blank.H is displayed in the simulation graphics.

Use the soft keys above F1, F2 and F3 to choose between plan view, three-side view and 3-D view.

Start the programming station.
Create a program for the "pattern plate" workpiece and define the BLK form.

Programming station

Exercises 2a, b, c, d

3 Technological fundamentals

3. Technological fundamentals

Calculating the cutting data
Cutting data in theory

Production quality, safety and good production times all require optimal cutting data.

Which two pieces of cutting data must be determined?

They are mostly determined from manufacturer catalogs.

Determine the shaft speed and feed rate for the milling head.
The cutting speed is $250 \mathrm{~m} / \mathrm{min}$, and the feed per tooth is 0.4 mm .

On the control the letter S indicates the spindle speed, and the letter F the feed rate.

Determine the necessary cutting data for the tools on page 8.
Use the available documentation.
Material: AlCuMgPbMn

Tool no.	Tool	Cutting material	$\mathbf{v}_{\mathbf{c}}$	$\mathbf{f}_{\mathbf{z}}$	\mathbf{z}	\mathbf{S}	\mathbf{F}

Calculations:

Cutting data in practice

The values calculated for the feed rate and spindle speed on the previous pages are based on theoretical values.
In practice, however, these values depend on many factors, and must often be adjusted.

State the factors that must be considered.

These factors show how interwoven the different aspects are.
There are no obviously correct cutting data, just cutting data that is more or less correct.

Being in contact with the tool manufacturer helps you to select the cutting data, but in the end you have to gather your own experiences. More experienced colleagues can help you with this.

Tool table

Enter the tools in the tool table.
Proceed as follows:

- Select the Manual Operation mode.
- Press the TOOLTABLE soft key.
- Press the EDIT ON soft key.

The following screen appears.

Press the arrow keys until you reach the fields to be edited, and enter the values.

(4)

DANGER OF COLLISION!

For real machining, enter the actual values for the length and radius!

The control activates this data when a tool is called in the program via the TOOL CALL key.

Other tool data, along with the length and radius,
can also be entered in the tool table.
However, only the length and radius are mandatory for production.

In these two windows an oversize for the tool length and tool radius is being edited.

This tool data will be explained later.

TNCguide has more information about the other tool data.

Linear motions

4 Linear motions

4.1 Positioning with FMAX

4. Linear motions

Positioning with FMAX

Explain what FMAX is.
\qquad
\qquad
\qquad
What is meant by "modally effective"?
\qquad
\qquad

For safety reasons, FMAX is only effective blockwise.

The pre-positioning to the next drill hole must be completed in this program excerpt. Complete line 19.

16 L X+95 Y+50 FMAX	Positioning
17 L Z-5 F250	Drilling
18 L Z+2 F250	Retraction
19	Positioning
20 L Z-5 F250	Drilling

4.2 Straight line (absolute)

4. Linear motions

Straight line (absolute)

- Absolute dimensioning refers to the workpiece datum.

Complete the table.

Hole 1	Hole 2	Hole 3
$\mathrm{X}=$	$\mathrm{X}=$	$\mathrm{X}=$
$\mathrm{Y}=$	$\mathrm{Y}=$	$\mathrm{Y}=$

4.3 Straight line (incremental)

LX... Y... . move to ...
4. Linear motions

Straight line (incremental)

- Incremental dimensioning refers to each momentary position of the tool.

Complete the table.

Hole 4	Hole 5	Hole 6
$X=$	$I X=$	$I X=$
$Y=$	$I Y=$	$I Y=$

 switch between absolute and incremental programming.

Program the following workpiece on your programming station.
Please observe the scheme on the next page.

Enter the required tool in the tool table.

$\stackrel{\rightharpoonup}{*}$		Programming operating mode
PGM MGT	BEGIN PGM ... MM	Create program
	$\begin{aligned} & \text { BLK-FORM } 0.1 \text {... X... Y... Z... } \\ & \text { BLK-FORM } 0.2 \text { X... Y... Z... } \end{aligned}$	Define workpiece blank
${ }_{\text {TodL }}^{\text {CAL }}$	TOOL CALL S...	Activate tool
\%	L Z +100 RO FMAX M3	Move to clearance height
	L X... Y... RO FMAX	Approach hole position $1(\mathrm{X}=20, \mathrm{Y}=30)$
	L Z+... FMAX	Move to set-up clearance
	L Z-... F250	Drilling
	L Z +2... FMAX	Retract the drill
	L X... Y... FMAX	Move to next position
L	L Z-...	Drilling
	L Z+... FMAX	Retract the drill
	L X... Y... FMAX	Move to next position
	L Z-...	Drilling
	L Z +100 R0 FMAX M30	Return to clearance height
	END PGM ... MM	End of program

Create another program, this time with incremental positioning between the drill holes.

Exercises 4a, b, c

4.4 Polar coordinates: Straight line LP

4. Linear motions

Polar coordinates

Polar coordinate radius PR:
Distance of position P_{1} to the pole.

With polar coordinates you can define a position in terms of its distance PR and its angle PA relative to a previously defined pole.

The pole is specified with CC.

Polar coordinate angle PA:
Angle from the angle reference axis ($=0^{\circ}$ line) to the line connecting the pole and P_{1}.

Inputting line 18:

- Select the path function.
- Press the polar key.
- Enter the polar radius PR.
- Enter the polar angle PA.

16 L X+10 Y+10 FMAX

17 CC
18 LP PR+30 PA+45 FMAX

Positioning
CC assumes the current position as the pole
Positioning with polar coordinates to P_{1}

The position of the pole can be entered directly in the CC block.

17 CC X+10 Y+10

18 LP PR+30 PA+45 FMAX

Input of the pole directly in the CC block
Positioning with polar coordinates to P_{1}Programming the pole does not result in axis movement.

Positioning to hole 3

Assume the actual position $\mathrm{X}+30 \mathrm{Y}+25$ as pole
Drilling
Retract
Positioning to hole 1
Drilling
Retract
Positioning to hole 2

Write the program for the following workpiece on your programming station.

16 L X+30 Y+25 FMAX
17 CC
18 L Z-5 F250
19 L Z+2 F250
20
21 L Z-5 F250
22 L Z+2 F250
23
\ldots

4. Linear motions

Summary

4. Linear motions

Writing an NC program
4. Linear motions

Test 1

In the HEIDENHAIN Interactive Training program, enhance your knowledge with the Summary and Writing an NC Program sections.
These sections prepare you for the first test.

Complete the first test and print it out. Paste it in here for your documentation. Paste it over the informational text on this page. You can repeat the test as many times as you want until you are satisfied with the result.

Start the programming station.
Add the drill holes to your program for the "pattern plate" workpiece.

Contour programming

5 Contour programming

Contours consist of circular and straight elements.
Programming dialogs are initiated with the gray dialog keys.

Identify the individual functions.
(See HEIDENHAIN Interactive Training, chapter 1, Keyboard overview)

1 :
6 :

2:
7:
3:
8:
4:
9:

5:

5.1 Radius compensation

Write the program for the following contour.
Use a cutter with $D=25 \mathrm{~mm}$.
The starting point for the contour is $\mathrm{X} 0, \mathrm{Y}+50$.
(Name: Diamond.H)

Simulate the program. What do you see?
5. Contour programming

Radius compensation

Improve your program by using radius compensation.

Which point of the cutter is programmed with RO?
\qquad
What does radius compensation do?

Explain RL, RR and RO.
RL:
RR:
RO:

Add RL and RR to the figure.

Which machining direction is to be selected in order for contours to be machined with climb milling?

Inside contours:
Outside contours:
Which radius compensation is to be selected in order for contours to be machined with climb milling?

5.2 Approach and departure

Approach and departure

APPR:

Approach/departure point is a corner point

Program blocks 16 to 18 are being run.
Write down the coordinates of the starting point, of the calculated intermediate point and of the first calculated contour point.
The tool radius is 6 mm .
16 L X-7 Y-7 FMAX
17 APPR LT X+10 Y+10 LEN 5 RL
18 L Y+40
19 DEP LT LEN 18
20 L Z+100 FMAX

1 :

2 :

3:

Program blocks 19 to 20 are being run.
Write down the coordinates of the last calculated contour point and of the calculated end point.

16 L X-7 Y-7
17 APPR LT X+10 Y+10 LEN 5 RL
18 L Y+40
19 DEP LT LEN 18
20 L Z+100 FMAX

DEP automatically rescinds the tool radius compensation.

Optimize the Diamond.H program.

Approach/departure point lies on the contour
Complete program blocks 16 to 18.
The following conditions apply:

- Tool radius: 6 mm
- Pre-position to X-20, Y0
- Approach strategy: LCT
- 1 st contour point: $X+10, Y+15$
- Approach radius: 10 mm
- 2 nd contour point: $X+10, Y+35$

Use HEIDENHAIN Interactive Training as needed.

\ldots	
16 L	Pre-positioning
17 APPR	Approach the first contour point with RL
18 L	Move to the second contour point
\ldots	

- If the approach/departure point lies on the contour, then mostly LCT (linear circular tangential) is used for approach/departure.

If the approach/departure point is a corner point, then mostly LT (linear tangential) is used.

Complete program block 19.
The following conditions apply:

- Tool radius: 6 mm
- Depart to $\mathrm{X}-8, \mathrm{Y}+45$
- Departure strategy: LCT
- Departure radius: 8 mm

Use HEIDENHAIN Interactive Training as needed.

Departure

Move to clearance height

Write the program for the following workpiece on your programming station.
Starting point: $X=75, Y=0$
Use an appropriate approach and departure strategy.

Inform yourself in TNCguide about the approach and departure

HELP strategies LN and CT.

5 Contour programming

5.3 Roundings and chamfers

5. Contour programming

Roundings and chamfers

RND (=rounding) inserts a rounded connection between two straight lines or arcs.

\ldots	
10 L X... Y...	Approach P1 as desired
11 L X... Y...	Approach P2
12 RND R...	Rounding arc
13 L X... Y...	Approach P3
\ldots	

Write the program for the following workpiece on your programming station.

CHF (=chamfer) inserts a straight connection between two straight lines.

\ldots	
10 L X... Y...	Approach P1 as desired
11 L X... Y...	Approach P2
12 CHF 5	Chamfer
13 L X... Y...	Approach P3
\ldots	

5.4 Circles

5. Contour programming

Circles CC/C

Circular motions can be programmed by entering the center point, end point and direction of rotation.
Explain the following entries.

CC:
*DR+:
*DR-:

In the following example the circular arc of the drawing excerpt is milled with up-cut milling. Explain the three program blocks.

\ldots	Explanation:
$10 \mathrm{LX}+15 \mathrm{Y}+15$	
$11 \mathrm{CCX}+25 \mathrm{Y}+25$	
$12 \mathrm{CX}+35 \mathrm{Y}+15 \mathrm{DR}-$	

Write the program for the following workpiece on your programming station.
*DR=direction of rotation

5.5 Circles with radius

5. Contour programming

Circles with radius

Remember that:

- Angle of CCA* $<180^{\circ}$: sign for radius: R+
- Angle of CCA* $>180^{\circ}$: sign for radius: R-
- Rotation clockwise: DR-
- Rotation counterclockwise: DR+

Add $R+$, $R-$, $D R+$, $D R-$ to the four figures.

Write the program for the following contour on your programming station.

[^0]

5.6 Tangential circles

5. Contour programming

Tangential circles

What is meant by "tangential"?
\qquad
\qquad
Complete line 19.

$16 \mathrm{~L} \mathrm{X}-30 \mathrm{Y}+100$
17 APPR LT X+0 Y+100 LEN 20 RL
$18 \mathrm{~L} \mathrm{X}+40$
19
20 DEP LT LEN 10

Pre-position

Approach

Traverse motion to X+40
Circular path
Departure

Write the program for the following contour on your programming station.

5. Contour programming

Enhance your knowledge with the Arranging blocks, Summary and Writing NC programs sections. These sections prepare you for the second test.

Arranging blocks

5. Contour programming

Summary

5. Contour programming

Writing NC programs

Complete the second test and print it out. Paste it in here for your documentation.
Paste it over the informational text on this page.
You can repeat the test as many times as you want until you are satisfied with the result.
5. Contour programming

Start the programming station.
Add the inside and outside contours to your program for the "pattern plate" workpiece.

Exercises 5a, b, c, d

FK programming

6 FK programming

6. FK programming

Basic functions, Application
Programming a contour

FK = free contour
If the workpiece drawing is not dimensioned for NC, and therefore cannot be programmed with the gray path-function keys, FK programming comes to your aid.

In the "angled workpiece" example, only the X coordinate and rise angle are known for the lower diagonal.
The Y coordinate is missing.
In order to program this contour using the functions described until now, you would have to calculate the Y value using trigonometric functions.

This is not necessary with FK.
There are four basic functions.

Explain them.

FL:
FLT:

FC:
FCT:

TNCguide has more detailed information about FK.

Complete blocks 8 to 11 of the "angled workpiece" program.

0 BEGIN PGM ANGLED_WORKPIECE MM	
1 BLK FORM 0.1 Z $\quad \mathrm{X}+0 \quad \mathrm{Y}+0 \quad \mathrm{Z}-20$	
2 BLK FORM $0.2 \quad \mathrm{X}+100 \quad \mathrm{Y}+100 \quad \mathrm{Z}+0$	
3 TOOL CALL 1 Z S3000	
4 L Z+100 R0 FMAX M3	
5 L X+110 Y-10 R0 FMAX	
6 L Z-5 RO FMAX	
7 APPR LT X+100 Y+0 LEN10 RL F1000	
8 L X	
$9 \mathrm{FL} X \quad \mathrm{AN}$	* X value and rise angle known
10 FL AN	* Rise angle known
$11 \mathrm{FL} X \quad \mathrm{X}$	* X value, Y value and rise angle known
$12 \mathrm{~L} \quad \mathrm{X}+100$	
13 L Y+0	
14 DEP LT LEN10	
15 L Z+100 R0 FMAX M30	
16 END PGM ANGLED_WORKPIECE MM	

Program the workpiece on the programming station using the
FK functions.
Note the following settings:

In the Programming operating mode, switch to the PROGRAM+GRAPHICS view using the screen layout key.

In the third soft-key row, toggle the two soft keys at right to ON and SHOW.

* Initiate FK dialogs with the FK key.

Enter all available data for every contour element.
Example for line 9:

- Preliminary considerations:
-What does the contour element look like?
- How does the the contour element start?

Straight line
Not tangential

\square Press the appropriate soft key.
FL

- Enter all known values via soft keys.
- X value known: enter value via soft key
- AN known: enter value via soft key

Assignment:Telephone
Complete program blocks 9, 10, 11, 13 and 14!
For line 11 , please refer to the next page.
Then program the contour on the programming station!
(workpiece blank dimensions: $100 \times 100 \times 20$, contour as island, $Z-5$)

Which basic FK functions are needed in this example?

Press the SHOW SOLUTION soft key to cycle through the possibilities.

SHOW

SOLUTION

Select the correct contour element as shown in the drawing.
The TNC automatically inserts block 12.

Meaning of the color depiction of the contour elements (depends on the machine):

Color	Function
Black	Contour element is fully defined.
Blue	More than one solution is possible for the entered data.
Red	More data is required to calculate the contour or contour element.
Green	More than one solution is possible. These are shown via the SHOW SOLUTION soft key.

Exercises 6a, b, c, d

Cycles

7 Cycles

7. Cycles

CYCL DEF / CYCL CALL

Frequently recurring machining cycles that comprise several working steps are stored in the TNC memory as standard cycles.
This makes it very simple to program slots, rectangular pockets, drill patterns, etc.

Explain CYCLE DEF and CYCLE CALL.
CYCLE DEF:
CYCLE CALL:
7. Cycles

Face milling, Rectangular pocket,

 Circular pocket, Slot millingProgram the following workpiece on the programming station based on the scheme on the next page.

TNCguide contains comprehensive information.

HELP

All parameters of the cycles are explained there.

Inputting line 5

- Press the CYCLE DEF key.
> Press the MULTIPASS MILLING soft key.
- Select Cycle 232.

Inputting line 6:

- Press the CYCLE CALL key.
- Press the CYCLE CALL M soft key.
MULTIPASS MILLING

(3)

CYCL
 CALL

(1)

(2)

Face milling definition

After face milling: upper surface $Z=0$

Call face milling

Positioning for rectangular pocket
Definition of rectangular pocket

Call rectangular pocket

Positioning for circular pocket
Definition of circular pocket

Call circular pocket

Positioning for slot
Definition of slot

Call slot

7. Cycles

Drilling, Rigid tapping,
Universal drilling

Program the following workpiece on the programming station based on the scheme on the next page.

Cycles 221 (Cartesian Pattern) and 220 (Polar Pattern) each call the last defined cycle at the defined positions.

All cycles which remove material (such as drilling) must be called (CALL-active cycles).

Cycles which do not remove material (such as coordinate transformation cycles) do not need to be called (DEF-active cycles).

Inputting line 6:

Inputting line 16:

0 BEGIN PGM THREAD MM
1 BLK FORM $0.1 \mathrm{Z} \quad \mathrm{X}+0 \quad \mathrm{Y}+0 \quad \mathrm{Z}-16$
2 BLK FORM 0.2 X $+100 \quad \mathrm{Y}+100 \quad \mathrm{Z}+0$
3 TOOL CALL 1 Z S1111 F555
4 L Z+100 R0 FMAX M3
5 CYCL DEF 200 DRILLING ~
...
...
6 CYCL DEF 221 CARTESIAN PATTERN ~
...
...
7 L Z+100 R0 FMAX
8 TOOL CALL 2 Z S1111 F555
9 L Z+100 RO FMAX
10 CYCL DEF 207 RIGID TAPPING NEW ~
...
...
11 CYCL DEF 221 CARTESIAN PATTERN ~
...
...
12 L Z+100 R0 FMAX
13 TOOL CALL 1 Z S1111 F555
14 L Z+100 R0 FMAX M3
15 CYCL DEF 203 UNIVERSAL DRILLING ~
...
...
16 CYCL DEF 220 POLAR PATTERN ~
...
...
17 L Z+100 RO FMAX M30
18 END PGM THREAD MM

CYCL
DEF
(1)

(2)

(3)
CYCL
DEF
(1)

(2)

(3)

Definition of drill holes

Call of drill holes on Cartesian pattern

Definition of thread

Call of thread on Cartesian pattern

Definition of drill holes on polar pattern

Call of drill holes on polar pattern

HELP
 HELP

TNCguide contains comprehensive assistance.
All cycles as well as the possibilities for calling cycles are explained there.

Start the programming station.
Add the cycles to your program for the "pattern plate" workpiece.

Exercises 7a, b, c, d

8 LBL applications

8.1 LBL as program section repeat

Programming loops

8. LBL Applications

Program-section repeat

Program section repeats are well suited for identical elements (such as drill holes) that are equally spaced.

A LABEL is set to mark a block number, starting from which a section of the program is repeated.

This is done with the LBL SET key. Labels receive either a number (1 to 999) or a name.
The end of the program section to be repeated is defined with the LBL CALL key. The number of repetitions (REP) is entered here.
Write the "LINEAR_PATTERN" program on the programming station.

	0 BEGIN PGM LINEAR_PATTERN MM	
	1 BLK FORM $0.1 \mathrm{Z} \quad \mathrm{X}+0 \quad \mathrm{Y}+0 \quad \mathrm{Z}-40$	
	2 BLK FORM 0.2 X $+100 \quad Y+50 \quad \mathrm{Z}+0$	
	3 TOOL CALL 3 Z S3000 F300	
	4 L Z+100 R0 FMAX M3	
	5 CYCL DEF 203 UNIVERSAL DRILLING ~	Definition of drilling cycle
	...	
	6 L X... Y... RO FMAX	Approach position 1 ($\mathrm{X}=15, \mathrm{Y}=30$)
	7 CYCL CALL	Call drilling cycle at position 1
	8 LBL 1	Set label
	9 L IX... RO FMAX	Incremental motion to next position
	10 CYCL CALL	Call drilling cycle at positions 2 to 8
	11 CALL LBL 1 REP6	Label call with six repeats
	12 L Z+100 RO FMAX M30	
	17 END PGM LINEAR_PATTERN MM	

Simulate the program in the Test Run operating mode one block at a time.
You can see each of the jumps.

8.2 LBL as subprogram

Repetition of identical elements

Elements that are repeated (contours, actions called on pitch circles, ...) can easily be programmed using subprograms.

Subprograms are entered after the end of the main program (after M30 or M2).
Subprograms are initiated with the LBL SET key, and are given a number (e.g., 1).

Subprograms are called with the LBL CALL key.
The NO ENT key is pressed in response to the REP question.

LBL 0 (line 23) means:

- End of subprogram
- Return to main program

Cycle call on pitch circle

A pitch circle is programmed in this example.
The cycles (counterboring, drilling) are called in a subprogram.

Write the program on the programming station.

Definition of counterbores

Call LBL1, counterboring

Definition of drill holes

Call LBL1, drilling

Beginning of subprogram

End of subprogram, return to line 7 / 12

Roughing and finishing

Another important application is the roughing and finishing of a contour. The contour description as well as the approach/departure instructions are written in a subprogram.

Write the program on the programming station.

0 BEGIN PGM ROUGHFINISH2 MM
1 BLK FORM 0.1 Z X ${ }^{\text {l }} 0$
2 BLK FORM $0.2 \quad \mathrm{X}+100 \quad \mathrm{Y}+100 \quad \mathrm{Z}+0$
3 TOOL CALL $10 \mathrm{Z} \mathrm{S5000}$ F500 DL+0.3 DR+0.3
4 L Z+100 R0 FMAX M3
5 L X-15 Y+35 R0 FMAX
6 L Z+2 RO FMAX
7 L Z-5 RO F AUTO
8 CALL LBL 1
9 *
10 TOOL CALL 8 Z S5000 F400
...
15 CALL LBL 1
16 * -
17 L Z+100 R0 FMAX M30
18 * -
19 LBL 1
20 APPR LT $\mathrm{X}+0 \quad \mathrm{Y}+50$ LEN10 RL
...
25 DEP LT LEN10
26 LBL 0
27 END PGM ROUGHFINISH2 MM

Call roughing cutter with oversize

Call subprogram

Call finishing cutter

Call subprogram

End of main program

Subprogram with contour description

End of subprogram, return to main program

Adding a chamfer to a contour

The addition of a chamfer is programmed using the same strategy as for roughing and finishing.
A 1 mm chamfer is to be added to the border of the diamond on the previous page.

Remember the following:

- Enter the chamfer cutter $\left(90^{\circ}\right)$ in the tool table, with a radius of 2 mm , for example.
- A milling depth of 3 mm results in a chamfer width of 1 mm .

What chamfer width results from a radius of 3 mm and a milling depth of 3.5 mm ?

Write the program on the programming station.

0 BEGIN PGM CONTOUR_CHAMFER MM	
..	
3 TOOL CALL $12 \mathrm{Z} \mathrm{S2500} \mathrm{F250}$	Call end mill
...	
7 L Z-5 RO F AUTO	
8 CALL LBL 1	Call subprogram
9 L Z+100 RO FMAX	
10 T00L CALL 1 Z S2500 F250	Call chamfer cutter (radius: 2 mm)
...	
14 L Z-3	Milling depth: 3 mm , chamfer: 1 mm
15 CALL LBL 1	Call subprogram
16 L Z+100 R0 FMAX M30	
17 * -	
18 LBL 1	Subprogram with contour description
19 APPR LT X+0 Y+50 Len10 RL F AUTO	
...	
24 DEP LT LEN10	
25 LBL 0	End of subprogram, return to main program
26 END PGM CONTOUR_CHAMFER MM	

Test Run.

Optimize the "pattern plate" program as follows.

- Face milling of the workpiece blank
- Pitch circle with subprogram
- Roughing and finishing of the outside contour, adding a chamfer, in subprogram

Exercises 8a, b, c, d

Take the final test in the HEIDENHAIN Interactive Training program and print it out.

Final test

Paste it in here for your documentation.
Paste it over the informational text on this page.
You can repeat the test as many times as you want until you are satisfied with the result.

Appendix

증 9 Appendix

Exercise 2 a

Exercise 2c

Exercise 2d

Exercise 4c

Exercise 4d

Exercise 5c

Exercise 6c

Exercise 7c

Exercise 8c

Exercise 8d

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Deutschland
© +49 8669 31-0
FAX +49 866938609
E-Mail: info@heidenhain.de
Technische Schulung/Technical Training
家 +49 8669 31-2293 oder 31-1695
FAX +49 8669 31-1999
E-Mail: service.training@heidenhain.de

[^1]
[^0]: *CCA=circle center angle

[^1]: www.heidenhain.de

